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Abstract-The solutions derived by Freeman and Simpkins for the diffusion equation in an incom- 
pressible chemically frozen boundary-layer flow are extended to include variations in surface and 
fluid properties by a suitable change of variable. In a worked example for the flat plate case, a com- 
parison is made with the exact series solution due to Inger and the local similarity approximation. 
For large values of the streamwise co-ordinate the local similarity approximation is shown tobeidentical 

to the first-order term of the asymptotic expansions derived herein. 

NOMENCLATURE 

constants defined in equation (2.13); r(n), 
binary diffusion coefficient ; w, 
reduced stream function, see equation C(6), 
(2.4) ; 
imaginary unit = (- 1)l12; A, 
recombination-rate constant ; II? 
constant defined in equation (3.2); t, 
non-dimensional density-viscosity para- 
meter ; PT 
power law constant; c, 
Schmidt number = &/pD); 
streamwise velocity component; 

gamma function; 
Dirac delta function; 
transformed co-ordinate, see equation 
(2.9): 
power law constant; 
viscosity; 
transformed co-ordinate, see equation 
(2.1); 
density; 
power law constant. 

orthogonal co-ordinate system; 
reduced mass fraction = a/u,. 

Subscripts 
6 evaluated at the edge of the boundary 

layer ; 
Greek symbols 0, 

a7 dissociation fraction; )V, 
reference value ; 
conditions on the surface. 

INTRODUCTION 

THE SOLUTION of the diffusion equation for the class of incompressible Falkner-Skan laminar 
boundary layers in flows which are chemically frozen has been given recently by Freeman and 
Simpkins [l]. The problem of the diffusion of species in such a flow reduces to that of solving an 
equation which is similar to the equation obtained in the thermal boundary layer that has been 
studied by Lighthill [2]. In that work Lighthill noted that if the Prandtl number was assumed to be 
large, the thermal boundary layer is much thinner than the velocity boundary layer; so that under 
these conditions the approximation of Fage and Falkner [3] that the velocity increases linearly with 
distance from the wall may be used. In the same way, if the assumption is made that the layer in 
which diffusion occurs is thin compared to the velocity boundary layer then since these thicknesses 
are proportional to their respective diffusivities this implies that the Schmidt number is large. 
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Using these approximations of linear velocity profile and large Schmidt number enables the diffusion 
equation in the Mellin transform plane to be solved in terms of confluent hypergeometric functions. 

The purpose of this paper is to show that the above theory can be simply modified to include 
the cases of continuously varying gas and surface properties. By a suitable change of variable both 
of these effects can be introduced into the problem in such a way that the equation to be solved is 
unaltered. The results of this modification are compared in a illustrative example with a solution 
due to Inger [4] for the flow over a flat plate with continuously varying surface catalycity. The 
solutions of Inger are an extension of the earlier work by Chambre and Acrivos [5] using a method 
analogous to the Chapman-Rubesin [q treatment of the heat-transfer problem to non-isothermal 
surfaces. 

2. FORMULATION OF THE PROBLEM 

By defining the independent variable in the usual boundary-layer co-ordinates (E, 7) where 

E = [ PepeUe dx (2.1) 

and 

(2.2) 

we can express the equation for the conservation of species in a chemically frozen two dimensional 
boundary layer as, 

lz” + Scfz ,az - 2 SC Cf 7g$ = 0. (2.3) 

Here it is assumed that the Schmidt number SC is constant, the primes denote differentiation with 
respect to 7, and the following non-dimensional quantities have been defined, 

f’(T) = & ; dd = $ ; 477) = ze 
and I(T) is assumed to have a constant value of unity. This assumption can be relaxed quite simply 
since it can be seen from (2.3) that the quotient (Z/SC) can be assumed to be constant, so that I z 1 
is no longer a necessary condition. Such a procedure might improve the accuracy of the solutions 
since both SC and I could vary within the imposed limitation that their quotient remains constant. 
This could be carried out by introducing ,!% = (SC/~) throughout the following derivations without 
essentially affecting the quoted solutions. Alternatively one can consider I itself as a suitably chosen 
constant and absorb it into the co-ordinate transformations. 

The boundary condition for first order reactions at the wall is given by 

a2 
( 1 

(25)1’s kw SC 

& w= &PW 
$5 0). (2.5) 

We now introduce the variations in properties along the surface in the following manner, 

PWPW = Bx” and (2) = (:)a~’ 

and assume the external velocity is given by 

(2.6) 

Ue = Axm (2.7) 
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where A, B and (kW/~& are all constants. In order that equation (2.4) and (2.6) are to remain con- 
sistent it is necessary to stipulate the value of u be compatible with the other assumptions, for 
example in incompressible flow u = 0. Using (2.6) and (2.7) the boundary condition at the wall 
(2.5) becomes 

_ “(2 SC (z). (1 +;; m)!(~-m)‘(i+~+~)) 
~((1+2~+o-m)l[2(l+~+m)ll z(f, 0) (2.8) 

Replacing the streamwise co-ordinate by a new variable 5 defined as 

1 = d/(2> SC kw (2.9) A (Jo (’ +;; my-@‘(l+“+m)) ~((1+2h+a-m),[2(l+(r+m)l) 

the wall boundary condition becomes 

and equation (2.3) yields, 

Z"-/-fSCZ~"SCf' 1 1+2X+a-m az 
1-l-a-l-m 1 

5z=O 

(2.10) 

(2.11) 

Making the Fage and Falkner assumption that the velocity at the wall may be approximated by 
its form in that vicinity, namely as 

f(V) = B7?2f”(0) (2.12) 

and introducing the following constants 

b = ; SC f”(0) 

c=;t 1 l+m+o 
1+2h+a-m > 

we can express the diffusion equation (2.11) as 

z”+3b+z’-9 9 7[$=0 
0 

where the boundary conditions are given as 

and 

g (LOI = 5 a 0) 

z([, co) = 1. 

(2.13) 

(2.14) 

i 

(2.15) 

3. GENERAL SOLUTION 

The form of the diffusion equation derived in Section 2 as equation (2.14) with the boundary 
conditions (2.15) is identical to that previously solved by Freeman and Simpkins [l] using Mellin 
transform techniques. The difference between the two problems is that here the properties of both 
the gas and the surface may vary continuously with X, whereas previously they had been assumed 
to be constant. The dependence of these variations on the position along the surface is inherent in 
(2.14) and (2.15) through the definition of the variable 5 and the constant b. 
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The complete solution of equations (2.14) and (2.15) has been derived in the earlier paper, and is 
given in the transform plane as, (see Appendix) 

T(s,o)+y/3Ky r(mw;-~)l~{ l?[(i - s)/c] l?[#(i + 1 - s)] F(i/c + Q) l?(2i/3) 
r[(i - S)/C + #] r[g(i-True) r[$(i il>l > (3.’ ) 

i=l 
where 

K = v/3 r(3i 
c r(+) - (3.2) 

Equation (3.1) has been constructed such that the pole occurring at s = 0 has a residue of unity. 
The value of the function z([, 0) in the physical plane may now be obtained from (3.1) by direct 
application of the Mellin inversion formula 

C l-im 

Z(s, 0) 5-8 ds. (3.3, 

Where C lies in the region where z” is regular [7]. Now when c is a rational fraction, the infinite pro- 
duct of (3.1) may be simplified considerably as we shall show in the following section. 

4.1 The JEat plate (m = 0) 
4. PARTICULAR SOLUTIONS 

As an example of this technique consider the case of a flat plate with variable surface catalycity, 
immersed in a frozen dissociated gas stream. For this example then m = 0 so that if we choose 
h = 3 and u = 0 we have c = 8 and the solution may be compared with that of Inger. 

Substituting c = Q into (3.1) then yields: 

qs, 0) = {(~)2’3&9 r;;; - s)] 

TI( 

rkti - 41 rCQ(i + 1 - 41 WW) + $1 W/3) 
r[g(i - s) + g)] r[$(i - s)] r(4i/3) r[j(i + I)] > 

(4 ,) 

. 
t=1 

where we shall allow p --f co after simplifying the product. After some manipulation, equation (4. I ) 
can be shown to be 

r(s) r[+(1 - s)] r[+(2 --- s)]) 
- ~ -~ 

r(i _ s) q* _ s) .[, (4.2) 

where the behaviour of I’(ax + b) N (ax)b I’(@ for large values of x has been used [8]. In equation 
(4.2) poles occur along the positive real axis whenever the arguments of one of the two gamma 
functions in the numerator becomes a negative integer, this occurs when s has the value of either 
(1 + In) or (2 + $z). Thus by substituting these values of s into (4.2) the asymptotic expansion 
of z&O) can be obtained by evaluating the residues of each of the poles. However, it can be seen 
from the form of (4.2) that not all of the terms in the expansion for the above values of s will occur. 
since for some of these values the arguments of the gamma functions in the denominator will 
themselves become negative integers and hence cancelling will occur. If we now substitute s = 3s’ 
into (4.2) then application of the gamma function duplication formula yields [8], 

.?(3s’, 0) = 
~3~’ 3~3~‘-13/4) r(q) r(4) 

~~4$.Y4(“S’-%- (q$p@); 
~(~‘1 qs’ + g) r(y + -i) r(g - s’) r(;% - s’) I‘(; -- s’) r(:; - s‘) _~ __ 

r($ -- s’) r(+ - 8’) 
(4.3) 
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The form of 2(3s’, 0) given in (4.3) shows that poles now occur along the positive real axis whenever 
s attains any one of the following values, (n + &), (n + &), (n + 8) or (n + ++). This expressionis, 
however, more straightforward than (4.2) because now cancelling of terms cannot occur for any 
of the above values of s since the arguments of the gamma functions in the denominator do not 
attain negative integer values. Using the identity 

(4.4) 

equation (4.3) may be expressed as the sum of three terms each of which has only a single gamma 
function yielding poles on the negative real axis. Hence 

r(g) r(s) 3(“-17/4) r(d + +) r(,7, - d) r(g - d)r(++ - 8’) _ 
i(3s’~o)={~~ijj]~{ r(i--‘)r(~--‘)r(9--‘) 

r(i) r(qz - d) r(+g - s’) r(d + 3) qg - s’) r(T7, - d) r(g - d) _~ ~. -- 
r(* - dj r(g - d) r(i - d) r(g ZjiTs’>r<a - d) > (4.5) 

Taking the inverse transform then allows (4.5) to be represented as a sum of three generalized 
hypergeometric functions [S]. Thus in the real plane we obtain, 

rcg3j r(g) 43 

r(g) r(g) 317’4 

16 5 3 
h-5 x 

0 
where 

Equation (4.6) then represents a complete series solution for all 5. Alternatively one can find the 
expansion about 5 = 0 and the asymptotic expansion by deforming the contour in the transform 
plane to embrace all the poles of Z(3(3s’, 0) [l]. Using this technique the expansion about t; = 0 may 
be obtained by putting 

s=-n, s = - (n + i) and s = - (n + 3) 

into (4.3) and then evaluating the residues of the poles of the transform that occur for the above 
values of s. This then yields the expansion about 5 = 0 as, 

1 0 3% w+ + 4 x 
4(2%+11/3) r(- n - 4) r(g - TI) r(n) qn + +g qn + 1) r(n + ~1 5 -- + 3(3n+17/4j 

[ qqq + ~2) r(g + t2) I( 1 z 
3n+l + 

ry- n - 6) ry- n - $1 r(t2 + 1) qn + ~1 r(n + $1 r(n + +s 5 3nf2 
__~- 

r(n + +g r(t2 + f) 10 > 7t: (4.7) 
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The asymptotic expansion is obtained by evaluating the residues of the transform when s has the 
following values, 

s=(n++), (n+&>, (n+#) and (n++i) 

This yields the asymptotic form as : 

m 

vu - n) ~(2~ - 4 r(t - 41 0 3(3+3’2) f’ (3n+1) + ma, [ 
r(n + riTi> r(n + ++) r(n + +) x 

r(+ - n) r(- $z - n) I 
3(3?~-11/4) r(n + 8) qn + 1) qn + g) r(- 4 - 12) [r(--f-f+-y~~-qyj--n)](~)(3~+7’4~+~[- r($g - n) q- a - n) I 

x 

3(3+1/2) r(ti + $4) r(n + 2) ryn + +;) q- i7z - n) 
[r(- $F - 4 re - 41 (fJ(3n+2) + 4. [-- q- 4 - n) r(- -,“? - H) I 

x 

[q- g -ET) q- i - n)~ K (3n~+11’4)7 0 .- 5 I 
It can easily be seen that the expansion about 5 = 0 could have been obtained in the same manner 

from (4.2) or indeed by direct substitution into the solutions of the earlier paper. In the case of the 
asymptotic expansion we have seen from (4.2) that poles occur along the positive real axis whenever 
s = (i + nc) for values of i = 1 and 2. When IZ is non-zero the values Sn = nc are eigenvalues, and 
the corresponding solutions will be the eigen solutions of equation (2.14). If a direct substitution 
procedure is adopted for the asymptotic expansion the appropriate form is 

When k = 0 and n # 0 the boundary conditions require that Lo%(m) = Len(O) = 0. The functions 
J&,(T)) are then the eigen solutions mentioned above. The form of expansion becomes 

when z is made to satisfy the boundary conditions where the L;,(q) are known explicitly. Such 
procedure does not yield explicit values for the constants A n, and it is necessary to use methods 
similar to those outlined previously to evaluate the terms in each particular case. 

The series expansion about 5 = 0 has been evaluated for the first f&teen terms and the results 
are shown in Fig. 1 compared with Inger’s fifteen term solution for this particular case. The 
asymptotic expansion result is also shown in Fig. 1, here the terms have been evaluated up to 
O(KM5. 

4.2 Stagnation point flow (m = 1) 
Two interesting results arise in the case of the stagnation point flow for which c is in general given 

by c = Q[Q + u)/(2X + u)]. The first case is that in which a = 0 and h = 2 so that c = 8 and the 
solutions given in the previous section may be used directly, bearing in mind that the behaviour 
of the surface catalycity is now proportional to xa as opposed to xl/s. 
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L-1 INGERS RESULTS 

SERIES SOCUT N 

EQUATION (4.7) 

LOCAL SIWLAR~TY 

FIG. 1. Comparison of the atom concentration along a plate for a power law distribution of surface catalycity with 
Inger’s series solution. 

The second case is that in which the atomic recombination reaction at the wall varies linearly 
with distance from the stagnation point (i.e. h = l).* Under these conditions the value of c = 3 
and is independent of the parameter c, so that the incompressible solutions may be applied to the 
compressible flows. With c = 8 we find that the required solution is identical to the flat plate solu- 
tion with h = 0, which has been outlined in the earlier paper. Thus in this particular case, the 
expansion about 5 = 0 is given by 

and the asymptotic behaviour as 

Clearly, although this solution is identical to the flat plate solution with h = 0, it will be scaled 
accordingly due to the difference of the values of the variable 5 in the two cases. 

5. THE LOCAL SIMILARITY APPROXIMATION 

The concept of local similarity is often invoked in order that a set of similar solutions may be 
extended to regions where similarity no longer exists. This approximation has been discussed in 
general by Hayes and Probstein [9] and its application to the present problem has been considered 
by Inger [4], so that only the relevant details will be given here. 

When the non-similar term is either small enough to be neglected or does not exist in equation 
(2.3), the equation can be formally integrated to yield the result first given by Goulard [lo], that 

1 + t;oZ1(17) 
Z(C,T> = -_____ 

1 + 50Il(~) 
(5.1) 

.- 
* Clearly, in this case since X is odd, one is strictly speaking not obtaining a solution to a symmetric two dimen- 

sional stagnation point since then all surface properties like k, should be even functions of x, i.e. k,(x) = k&x). 
The author is grateful to one of the referees for raising this point. 
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The boundary condition at the wall requires that 

(5.2) 

where 1 = to = const., and 

W) = ? {exp [- Sc hbl} 6 (5.3) 
0 0 

Inger has shown how to ascertain under what conditions the flow properties may be assumed to 
be slowly varying, by considering the integral formulation of equation (2.3) including the non- 
similar term. The resulting expression after the locally similar value for z(7) given by equation (5.1) 
has been substituted into the quadrature, is given by the following expression, 

where 

M77) = 

and 

1 + 2 sc 4 @Wf) zdoo) [Z3( a) - Z2( co)] 

z(O, f) A 
[l + h(a) Cl2 

11 + 5 Zl(cfJ)l 

‘1 

s exp [-- SC ~.fh) dd 
0 

0 

1). 

(s [ew (SC ?_fh) dwl x wld 
drl4 

0 
j3&‘(72> drlz 

> 
0 

(5.4) 

1) 710 

h(7) = s exp [- SC ~_f(73) dwl kxp (d fh) hl f’(w) dv dv 
0 is 0 

0 0 

From equation (5.4) it can be seen that the local similarity approximation will be valid when the 
second term in the numerator is small compared with unity, that is when 5 B 1; such a condition 
implies that the surface is locally highly catalytic. If, however, 5 is of order unity the above condition 
is not necessarily true, so that the accuracy of the local similarity approximation becomes more 
suspect as the surface recombination rate decreases. 

Let us now turn our attention to examining the effect of assuming 5 B 1 on the local similarity 
approximation. From equation (5.1) we find that the asymptotic behaviour of ~(0, 5) for large 5 is 
given by 

Now applying the Fage and Falkner assumption to equation (5.3) we find that 

4(m) = $ {exp [- -,Jj SC d.f”‘(O)]} dy (5.6) 

Changing the variable of equation (5.6) it is a straightforward procedure to show that 

II(co) = b-r’s r(+) 

so that the asymptotic behaviour of the local similarity approximation is given by 

(5.7) 

where b is defined by equation (2.13). 

(5.8) 
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Now the asymptotic series can be interpreted from equation (4.2) in the following form, 

z(c* O) a(5 - 3n)/41 r[3 (1 - 342)i 

+ r[(li=?;j~] l?[- 4 (1 + 3n/2)] 
r(2 + 3n/4) r[- 4 (1 + 3n/4)1 (~6 ys+(sfi’4)> 

9 5 (5.9) 

Evaluating the first-order term in this expansion we obtain 

1 K 
z([,O) N ~- 

2 r(g) -c + * . . 0 

and hence substituting for K from the definition in equation (3.2) we find the first-order term in the 
asymptotic expansion is given by 

Thus the behaviour obtained from the local similarity approximation for 5 B 1 is the same as 
the first-order term in the asymptotic expansion. The results obtained from using the local similarity 
approximation have been plotted on Fig. 1. As is to be expected from the above analysis this approxi- 
mation yields a rather poor quantitative agreement of the atom concentration profile for values of 
(5/k) < 5. After th’ is value the asymptotic behaviour becomes more and more dominated by the first- 
order term and the agreement predicted above for 5 $ 1 can be clearly seen. It is also quite clear that 
because of the above reasons the local similarity solution does not represent a means of effectively 
bridging the small 5 and large 5 solutions, the error in this vicinity being approximately 25 per cent 
of the local atom concentration for the case under consideration. 

6. CONCLUDING REMARKS 

It has been shown that the solutions derived by Freeman and Simpkins for the diffusion equation 
in an incompressible laminar boundary layer that is chemically frozen may be extended to include 
continuous variations in both surface and fluid properties adjacent to the wall by a suitable change 
of variable. The application of the transform technique allows the asymptotic expansion to be 
evaluated explicitly including the terms involving the eigen values. When the problem is formulated 
as an integral equation the initial terms in the asymptotic expansion may still be evaluated, viz. 
Lighthill [2]; however, the evaluation of the terms which include the eigen solutions is more difficult. 

The results of this method have been compared in a particular case with Inger’s series solution 
of the exact equation and the local similarity approximation. It has been shown that the results 
obtained here appear to coincide with those of Inger for values of (C/K) less than unity, while the 
local similarity approximation predicts atom concentration values which are some 25 per cent too 
low in this region. For values of 5 B 1 the local similarity approximation gives the first-order term 
in the asymptotic expansion. The good agreement between the present solution and Ingers exact 
results is not altogether surprising since the approximation of linear velocity profile near the wall 
is valid for Schmidt number of order unity, and is, of course, asymptotically exact in the limit SC+ co. 
It is well known that the Schmidt number is a function of the atom concentration, and that for 
ae < 1 the value of SC 11 0.5, see Dorrance [ll], so that the assumption of SC large might appear 
to be questionable. Recent work by Freeman [12] suggests that even for values of SC N 0.5 the first 
eigen value in the asymptotic solution has only increased by approximately 5 per cent of the value for 
SC B 1. However, when SC < O-5 the eigen value increases steeply the limiting value of 2 when 
SC = 0. This behaviour is due to the non-uniformity present in the solution as SC + 0. Thus the 
approximation of SC large appears to be good for values of SC 3 0.5. 
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APPENDIX 

Derivation of the solution to equation (2.14) 
In the present notation the formal definition of a Mellin transform is given by Erdelyi as [7] 

Ys, 7) = “r ~(5, rl) t8-l d5 
0 

(A. 1) 

Applying this definition to equation (2.14) and using the transform property that 

[- 1; @z/Q] + sz, 

we obtain the equation in the Mellin plane as 

z”” + 3b+ z”’ + 9 (b/c) 7s z” = 0 (A.2)’ 

The complete solution of an equation of this type has been given by Punnis [13] and Fettis [14] 
in terms of the confluent hypergeometric function. Formally this may be achieved by the sub- 
stitution of z”(s) = e-e Y(0) into equation (A.2), where 0 = b+. The resulting equation is then recog- 
nisable as one of the confluent hypergeometric type, the solution of which is, 

.F(s, T> = A exp [- bdl WI H - (s/c>; 3, 2 * b$] i- (B/A) b1’3r) IFI [l - (s/c); $; bv31> (A-3) 

see for example, Erdtlyi [8]. The boundary conditions at 77 = 0 and 17 -+ 00 then yield the values of 
A and B so that the solution can be expressed as 
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w m - W)l 82 
qs, 7) = 27qfs) - -- 

(-1 b1’3 r(i) r[l - (s/c)] a7j 
exp [- b7j3] x 

n=l) 

The boundary condition that z --f 1 as 7 -+ co is satisfied since z” -+ 2~8(is). The application of the 
transform formula that [z(c) + z”(s + 1) yields the boundary condition at 7 = 0 as 

qs+ 1,O) +o, 
When this condition is imposed on equation (A.4) we obtain the behaviour of z” on the surface 

in the following recurrence relationship, 

.5(&s, 0) = 277 S(is) - ____ 
w w -- w)i z”(s + 1 o) 

b1/3 r(g) r[i - (S/C)] 3 (A4 

Rearranging (A.6) and neglecting for the present the delta function which only has a contribution 
.at s = 0, we can express the recurrence equation as 

z(s 

2 

o) = K(S - 1) r u - 4bi a - 1) 
r[8 + (1 - s)/c] (A-7) 

In equation (A.7) it can be seen that a pole will occur when the gamma function in the numerator 
has a value s = (1 + nc) for integer II, and therefore by the recurrence equation a series of poles will 
occur along the positive real axis at values of s = (i + nc) where 1 < i < co. Now, the change in 
the boundary condition at the leading edge of the plate or wedge requires the stipulation that 
.s,? (s, 0) -+ 1 as s --f 0, this condition is met by the introduction of the delta function. Since a pole 
therefore occurs at the origin, a series of poles will be generated along the real axis for both positive 
and negative integer values of s as a result of equation (A.6). 

If equation (A.7) is examined for various values of s it is found that a formal solution of the 
equation can be expressed as 

(A-8) 

The product occurring in (A.@ is not absolutely convergent when Q tends to infkity, and it is 
necessary to introduce extra terms to satisfy this condition; the resulting expression after this 
procedure has been carried out corresponds to equation (3.1) in the text. 

Rt%nn&Les solutions obtenues par Freeman et Simpkins pour l’equation de la diffusion dam une 
couche limite incompressible et fig& chimiquement sont &endues pour inclure les variations de 
proprietes de la surface et du fluide par un changement convenable de variable. Dam un exemple 
resolu pour le cas de la plaque plane, on fait une comparison avec la solution exacte par serie due a 
Inger et l’approximation de la similitude locale. Pour de grandes valeurs de la coordonnee prise le long 
de l%coulement on montre que l’approximation de la similitude locale est identique au terme du 

premier ordre des developpements asymptotiques obtenus ici. 

Zusammenfassung-Die von Freeman und Simpkins abgeleiteten Losungen der Gleichung tiber die 
Diffusion in einer chemisch eingefrorenen Grenzschichtstrijmung bei inkompressiblen Medien werden 
erweitert, urn Verlnderungen an der ObertIache und den Stoffwerten der Fhissigkeit durch einen 
geeigneten Parameterwechsel mit zu erfassen. An einem fur den Fall der ebenen Platte ausgearbeiteten 
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Beispiel wird die genaue Lijsungsreihe von Inger mit der Grtlichen Naherung nach der Iihnlichkeits- 
theorie verglichen. Fiir grosse Werte der Stromungskoordinate wird gezeigt, dass die drtliche Naher- 
ung nach der Ahnlichkeitstheorie identisch ist mit dem Glied 1. Ordnung nach der hier abgeleiteten 

asymptotischen Reihe. 

AmzoTaqmr-Pemeunn yparmenmi ~III$@~~MH B noipami~noiM cmoe irecxmraenforo XIIMI~YBCKII 

a3a~fopoxwlllloro P TeyeHw, riozryyeIlHbie paHee (DPLIMCH~M M CEIMIIKEIHCOM, pacnpocrpasemr 
Ira CJiY’lati IIelIOCTORHHbIX CBOtiCTL IiOBepXlIOCTll II FKHAKOCTM IIyTeM COOTBeTCTBylOlqeii 

~Io~s+niaqIw nepeMeHfioir. I3 pa36tipaeMow ripwepc nnoc~oii nnacTHllbI AaeTcn cpaBHeHHe 

C TOqHbIM pellieHIieM BHI-epa B BXIAe pF1Aa El ripM6JiIl~eHLleM JOi~a.TibilOI’O lIO~Of%R. ~OKa:laHO~ 

‘IT0 ,QtiZfl 6OJIbilIIlX 3IIaYeHHii IipO~OJiblIOiir KOOpAIlHaTbI npn6xnxerme JiOKa.?b1iOl’O IiO~O6IIJJ 

TO?KfEAeCTBCIiHO VZiCH-j’ IIepBOI’O IIOpJi;~Ji~l ;\CI~IDl~TOTil~IeCI~iIX pa3JIOJKeHdi, IiOZI)W’FIlIbIX II :)TOii 


